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a b s t r a c t

Computer-assisted optimization of chromatographic separations requires finding the numerical solu-
tion of the Equilibrium-Dispersive (ED) mass balance equation. Furthermore, the competitive adsorption
isotherms needed for optimization are often estimated numerically using the inverse method that also
solves the ED equations. This means that the accuracy of the estimated adsorption isotherm parameters
explicitly depends on the numerical accuracy of the algorithm that is used to solve the ED equations.
The fast and commonly used algorithm for this purpose, the Rouchon Finite Difference (RFD) algorithm,
has often been reported not to be able to accurately solve the ED equations for all practical preparative
experimental conditions, but its limitations has never been completely and systematically investigated.
In this study, we thoroughly investigate three different algorithms used to solve the ED equations: the
RFD algorithm, the Orthogonal Collocation on Finite Elements (OCFE) method and a Central Difference
Method (CDM) algorithm, both for increased theoretical understanding and for real cases of industrial
interest. We identified discrepancies between the conventional RFD algorithm and the more accurate
OCFE and CDM algorithms for several conditions, such as low efficiency, increasing number of simu-
rocess chromatography
rthogonal collocation on finite elements
CFE
ouchon finite difference method
FD

lated components and components present at different concentrations. Given high enough efficiency,
we experimentally demonstrate good prediction of experimental data of a quaternary separation prob-
lem using either algorithm, but better prediction using OCFE/CDM for a binary low efficiency separation
problem or separations when the compounds have different efficiency. Our conclusion is to use the RFD
algorithm with caution when such conditions are present and that the rule of thumb that the number of
theoretical plates should be greater than 1000 for application of the RFD algorithm is underestimated in

many cases.

. Introduction

Today there is a growing interest to use computer-assisted opti-
ization of preparative chromatographic separations for industrial

pplications. This trend is due to the development of modern com-
uting power combined with the recent development of rapid
ethods for parameter determination; e.g. the Inverse Method

IM). The concept is in line with the FDA guidance (Pharmaceutical
GMPs, SEP 2004) pointing out the importance of (i) understanding

nd (ii) developing mathematical relationships for the process.

Chiral preparative chromatography is of special importance
or the pharmaceutical industry; regulatory authorities today
equire that the pharmaceutical industry investigate the optical

∗ Corresponding author. Tel.: +46 54 700 19 60.
E-mail address: Torgny.Fornstedt@kau.se (T. Fornstedt).

021-9673/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
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© 2010 Elsevier B.V. All rights reserved.

isomers of each candidate drug regarding pharmacological and,
especially, toxicological and pharmacokinetic properties (Pharma-
ceutical CGMPs, SEP 2004). For each new drug application, there
are thousands of candidate drugs, where each optical isomer must
be isolated in mg – g amounts for evaluation. By using numerical
simulation, we can predict the optimal experimental conditions for
maximal throughput of the desired isomer(s) under given restric-
tions, e.g. yield and recovery. The most important information
required for the numerical optimization is the competitive adsorp-
tion isotherms of the product and impurities.

The inverse method is a rapid method that has been devel-
oped for obtaining the competitive adsorption isotherm input data

directly from the overloaded elution profiles and has been success-
fully applied for many years [1].

For many experimental situations, the column model consid-
ered in the IM is the Equilibrium-Dispersive (ED) mass balance
equations [1]. The question of which mass balance equation is valid,

dx.doi.org/10.1016/j.chroma.2010.11.029
http://www.sciencedirect.com/science/journal/00219673
http://www.elsevier.com/locate/chroma
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or the particular experiment, is of another nature, and has been dis-
ussed in detail earlier [2,3]. In this work, we will use the ED model
o describe the propagation of components in a chromatographic
eparation.

Solving the ED mass balance equation accurately is of great
mportance in the IM, since errors in the solution will decrease the

odels ability to predict elution profiles and hence to accurately
stimate the adsorption isotherm parameters. There has been a lot
f research regarding this problem, but there still exist unresolved
uestions. The reason to this is mainly that there are no analyt-

cal solutions even for the typical binary, non-linear separation
roblem. Furthermore, the error analysis of any applied numeri-
al scheme is complicated. In the case of different finite difference
chemes, exact conditions on the time and space discretization
re only available for linear conditions. However, accumulated
xperience has shown that the approximate guidelines used are
ufficiently good in most cases and this has been verified by
he degree of overlap between experimental and simulated elu-
ion profiles for different experimental systems and adsorption
sotherm models [1].

The accuracy of the commonly used Rouchon Finite Difference
RFD) numerical scheme is only first order. To reduce numerical
rror, it is possible to state finite difference schemes with error
erms of higher order and let the grid of time and space approach
nfinite discretization, or to use finite element schemes [1,4]. The
ecommendation has been not to use other finite different schemes
ut instead the method of Orthogonal Collocation on Finite Ele-
ents (OCFE) [1].
Because of the simplicity of implementation of a finite differ-

nce scheme over OCFE, we will systematically compare RFD with
nother higher order finite difference scheme and the OCFE algo-
ithm. We will not only present numeric studies, but also validate
ur findings with experimental studies when the inverse method
s applied for high and low efficiency chromatographic separation
rocesses.

Although a huge number of successful applications of RFD [5]
complete consensus has not yet been reached concerning when

he RFD should be used and when it is needed to use a more time
onsuming alternative such as OCFE. Therefore there is a need for
more systematic investigation. Moreover, in some of the reports
ublished, some contradictory conclusions appear concerning the

imitations of RFD. Earlier, it has been concluded that there exists
erious problems with RFD when applied to binary separations with
ow column efficiency, N < 1000, regardless of adsorption isotherm,
ut negligible differences for N > 1000 when considering Langmuir

ike adsorption isotherms [1]. This is in clear contrast to a recent
ublication where loss of accuracy was reported in a binary sepa-
ation with an additive at such high column efficiency as N > 10,000
5]. Loss of accuracy was also reported for binary separations at
verage column efficiency where the components are present at
arkedly different concentrations ratios [1] and serious error or

ven no computability was reported for some adsorption isotherms
ith different concavity than Langmuir [5]. Common for all these

eports are that they demonstrate problems with RFD under some
pecific conditions and that they indicate that the rule of thumb
o require at least 1000 theoretical plates for RFD may be greatly
nderestimated.

Because low column efficiency, typically less than 1000 and as
ow as 100 theoretical plates, still are frequently encountered in
rocess scale chromatography, it is also important to investigate
he performance of RFD and more accurate algorithms in more

etail. In addition, in these often chiral separations of optical iso-
ers, the second eluted isomer regularly has less column efficiency

han the first eluted one. Because the RFD algorithm uses average
olumn efficiency, we need to investigate the case of mixed low
olumn efficiency.
. A 1218 (2011) 662–672 663

To summarize, this work aims at giving more complete guide-
lines on which algorithm to use under different experimental
conditions, more specifically to:

(i) Estimate adsorption isotherms with the IM and compare the
goodness of profile fit for a quaternary high efficiency separa-
tion problem, as well as for a low efficiency binary separation
problem.

ii) Compare the solutions obtained with the different algorithms
for a quaternary separation problem for a large set of combina-
tions of column efficiency and load.

iii) Compare the solutions obtained with the different algorithms
for a binary separation problem when the two components are
present at different concentrations and column efficiencies.

iv) Compare the solutions obtained with the different algorithms
for a binary separation problem when the two components have
different column efficiency.

(v) Compare the solution obtained by different algorithms as a
function of the number of components and combination of
retention factors.

In contrast to earlier studies, showing isolated cases, we will
compare over 1000 simulated eluted profiles in order to investigate
trends.

2. Theory

2.1. Column model

The Equilibrium-Dispersive (ED) model is a generally accepted
and frequently used model for many applications of LC [1]. Despite
its many simplifications of the chromatographic process, it has been
successfully used in modeling the separation of many substances
[6],
⎧⎪⎪⎨
⎪⎪⎩

∂Ci(x, t)
∂t

+ F
∂qi(x, t)

∂t
+ u

∂Ci(x, t)
∂x

= Da,i
∂2Ci(x, t)

∂x2
,

0 ≤ x ≤ L, t > 0, i = 1, . . . , n,
Ci(x, 0) = 0,
Ci(0, t) = ϕi(t).

(1)

Eq. (1) is the differential mass balance equation for component i of
n. Ci(x,t) and qi(x,t) are the stationary and mobile concentrations of
component i at time t in and column position x. F is the phase ratio,
L is the column length and u is the linear velocity. Da,i = Lu/2Nap,i is
the lumped mass transfer and dispersion coefficient. Ci(0,t) = ϕi(t)
is the left boundary condition, i.e., ϕi(t) is a measured or idealized
injection profile. Ci(x,0) is the initial conditions of the column.

Existing methods to solve Eq. (1) range from using different
kinds of finite difference approximations to finite element approxi-
mations [1,7]. In this paper, we will focus on the application of three
numerical schemes to solve Eq. (1), two finite difference methods
and one finite element method. The first finite difference scheme is
the well studied and successfully applied finite difference scheme
is the Rouchon Finite Difference method (RFD) [8]. Whenever it is
applied in this work, it is the implementation of Forssén et al. [6].

To further investigate the finite difference scheme approach
in solving Eq. (1), we have implemented a higher order scheme.
Because of the use of a central difference approximation of the spa-
tial derivative, we call this scheme the Central Finite Difference
Method (CDM).
The solution of partial differential equations using the orthog-
onal collocation method was widely discussed in [9], and this
method has successfully been applied to the modeling of differ-
ent separation- and reactor processes in chemical engineering. The
OCFE method, initially applied to the solution of Eq. (1) by Ma and
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uiochon [4], will be used here with the refined implementation of
aczmarski et al. [10].

While the RFD method is one of the fastest numerical schemes,
ts order of accuracy, use of averaged column efficiency and com-
onent traveling speed will not guarantee exact solution of Eq. (1).
btaining solutions of the ED model, using the method of OCFE, is
onsidered to be the most accurate and robust strategy available
5].

.2. Numerical solutions to column model

The RFD numerical scheme used in this paper is an apparent
olution of the ideal model of chromatography where the physi-
al dispersion is approximated by the numerical dispersion that is
djusted by the discretization of the ED model,

Cn+1
i,j

− Cn
i,j

�t
+ F

qn+1
i,j

− qn
i,j

�t
+ u

Cn+1
i,j+1 − Cn+1

i,j

�x
= 0,

i = 1, . . . , Nc, j = 0, 1, . . . , Nspacesteps,

n = 0, 1, . . . , Ntimesteps,

C0
i,j

= C0,i,

Cn
i,0 = ϕi(t), 0 ≤ n ≤ Ninjectionsteps + 1,

�x = L

Navg
,

�t = 2L

Navgulinear
avg

.

(2)

ere Nc is the number of components and Navg is the average col-
mn efficiency for all simulated components.

To determine the concentration of a species in the unknown
ime and space step, the following update formula is used.

Cn+1
1,j+1

Cn+1
2,j+1

...

Cn+1
Nc,j+1

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Cn+1
1,j

− �x

u�t
(Cn+1

1,j
− Cn

1,j + F(qn+1
1,j

− qn
1,j))

Cn+1
2,j

− �x

u�t
(Cn+1

2,j
− Cn

2,j + F(qn+1
2,j

− qn
2,j))

...

Cn+1
Nc,j

− �x

u�t
(Cn+1

Nc,j
− Cn

Nc,j + F(qn+1
Nc,j

− qn
Nc,j))

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(3)

he CDM numerical scheme can be explicitly formulated as follows,

Cn+1
i,j

− Cn
i,j

�t
+ F

Nc∑
z=1

∂qiC
n+1
z,j

− Cn
z,j

�t
+ u

Cn+1
i,j+1 − Cn

i,j+1

2�x

= Dai

Cn
i,j+1 − 2Cn+1

i,j
+ Cn

i,j+1

�x2
,

i = 1, . . . , Nc, j = 0, 1, . . . , Nspacesteps,

n = 0, 1, . . . , Ntimesteps,

C0
i,j

= C0,i

Cn
i,0 = ϕi(t), 0 ≤ n ≤ Ninjectionsteps,

∂Ci(x, t)
∂x

∣∣∣∣
x=L

= 0,

�x = L

max(Ni)
,

�t = ε
�x

max(L/tR)
,

(4)
here ε is a small number, dynamically adjusted to ensure algo-
ithm stability that is imposed by requiring that mass is preserved
hroughout simulation. If there are steep concentration gradients,
.g., due to high column efficiency or large ratios of component con-
entrations, the algorithm might be unstable and ε is decreased. The
. A 1218 (2011) 662–672

parameter ε is therefore an implicit function of both q, column effi-
ciency N and C. The parameter tR is the retention times of simulated
components at linear conditions.

The explicit formulation of the update formula is written,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎝

Cn+1
1,j

Cn+1
2,j

.

.

.
Cn+1

Nc,j

⎞
⎟⎟⎠ = 1

�t

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎝

a11 a12 . . . a1Nc

a21 a22 . . . a2Nc

.

.

.
.
.
.

. . .
.
.
.

aNc1 aNc2 . . . aNcNc

⎞
⎟⎠

−1 ⎛
⎜⎝

x1

x2

.

.

.
xNc

⎞
⎟⎠ +

⎛
⎜⎜⎝

Cn
1,j

Cn
2,j

.

.

.
Cn

Nc,j

⎞
⎟⎟⎠

⎫⎪⎪⎬
⎪⎪⎭

a˛ˇ =

⎧⎨
⎩

1 + F
∂q˛

∂Cˇ
, ˛ = ˇ,

F
∂q˛

∂Cˇ
, ˛ /= ˇ,

xk = Dak

Cn
k,j+1

− 2Cn
k,j

+ Cn
k,j−1

�x2
− u

Cn
k,j+1

− Cn
k,j−1

2�x
(5)

RFD requires no external computational routines when compiled
using Fortran code, but CDM uses the DGESV and ZGESV routines
in the LAPACK library [11].

The explicit statement of the OCFE method used in this paper
is much more complex [9]. The idea of the method is to divide the
normalized space coordinate in the interval [0,1] into NS subdo-
mains (elements). In each kth element, the N(k) internal collocation
points are defined and the solution is approximated by Lagrange
polynomial of degree (N(k) + 2). The overall solution is obtained by
joining the solutions in each element. The details of the discretiza-
tion of the spatial derivatives following the orthogonal collocation
method are presented in [10]. The set of ordinary differential equa-
tions obtained through the discretization process was solved using
the VODE solver [12]. The VODE solver automatically controls the
integration time interval to fulfill the requirement of accuracy of
the calculation. However, the number of the sub domains, NS, and
the number of internal collocation points, N(k), have to be chosen
individually for the analyzed problem.

The OCFE method produces solutions with oscillatory behavior.
The oscillations vanish when NS and N(k) increase. The obtained
solution can be regarded as “real” when: (i) increasing the number
of sub domains or internal collocation points, above the certain
values has practically no effect on the solution obtained, (ii) the
mass balance is fulfilled.

For the solution of a chromatographic separation process, when
the isotherm model is described by convex upward isotherm, N(k)
can be assumed to equal 3 for each sub domain. In such case, the
number of sub domains should be close to a tenth of N, where N
is the number of theoretical plates. In this work we have assumed
N(k) = 3, NS = 0.1N and checked that further increasing NS has no
effect on the solution obtained.

2.3. Adsorption isotherms and their determination

The adsorption isotherm applied in this work is the competitive
bi-Langmuir,

qi = a1,iCi

1 + ∑Nc
j=1b1,jCj

+ a2,iCi

1 + ∑Nc
j=1b2,jCj

. (6)

where aj,i and bj,i are the distribution coefficient and the association
equilibrium constant for the jth site and ith compound.

There are numerous methods of determining adsorption
isotherm parameters and the reader is referred to the detailed

reviews of Guiochon et al. [1] and Morgenstern [13]. In this study,
the inverse method is used, it has been discussed and applied
numerous times in the literature [1,6,14]. The steepest descent pro-
cedure used in this work does not ensure that a global optimum is
found, i.e., the best possible adsorption isotherm parameters are



atogr

f
m
r

3

3

c
p
A
e
M
5
1
p

b
a
c

w
(
m
c
d
t

m
i
t
a
m

u
0
t
f
e
m
w
u
i
i
p
d
t

3

w
t
r

L
c
r
S
A

a
d
w

M. Enmark et al. / J. Chrom

ound, once the convergence criterion is reached in the inverse
ethod. Using implementations involving genetic search algo-

ithms decreases this risk [15,16].

. Experimental

.1. Separation of ethyl- and methyl mandelate on AGP column

A 10 × 0.46 cm AGP column (ChromTech, Hägersten, Sweden),
onsisting of 5 �m silica beads with immobilized �1-acid glyco-
rotein (AGP) as chiral selector was installed in a Hewlett-Packard,
gilent 1100 system (Agilent Technologies, Palo Alto, CA, USA). Elu-
nt was prepared by dissolving acetic acid and sodium acetate in
illiQ water, making a 75 mM acetate buffer at pH 5, ionic strength

0 mM. Additionally, methanol was added to a concentration of
.4% (v/v). The buffer was filtered through a 0.22 �m filter (Milli-
ore) before use.

The column was equilibrated with eluent at a constant, cali-
rated flow at 0.7 mL/min and kept at 20 ◦C in water bath during
ll experiments. UV-detection was made by a DAD detector and
hromatograms were exported at 254 nm.

4.8 mM stock solutions of S(+)/R(−)-ethyl/methyl mandelate
ere prepared by dissolving S(+)/R(−)-ethyl/methyl mandelate

99% purity, Sigma–Aldrich, Stockholm, Sweden) directly in the
obile phase. To measure the injection profile of the system, the

apillary tube connecting the injector and column was connected
irectly into the UV-detector whereupon a triplicate of 60 �L injec-
ions of 0.5 mM S(+)-ethyl/methyl mandelate were made.

Initial analytical injections to determine efficiency (half height
ethod) of the two enantiomers were made in triplicate by

njecting 7 �L of 40 �M racemate and single injections of each enan-
iomer. The column efficiencies were found to be 2740, 2690, 2270
nd 2360 theoretical plates for the enantiomers S(+)/R(−) methyl-
andelate and S(+)/R(−)-ethyl-mandelate, respectively.
Four overloaded injections were made with injection vol-

me 60 �L and with injection concentrations were 0.6, 0.8,
.96 and 1.2 mM per component, respectively. Maximum elu-
ion concentrations, determined by converting the detector signal,
or these injections were 0.04, 0.08, 0.18 and 0.23 mM for the
nantiomers S(+)/R(−) methyl-mandelate and S(+)/R(−)-ethyl-
andelate, respectively. Uracil (99%, Sigma, Stockholm, Sweden)
as used as unretained void-volume marker. The elution peak of
racil was also compared to the minor disturbance of pure eluent

njection peak and was found to coincide at t0 at 1.5 min (triplicate
njections of 7 �L). Component response curves were measured by
umping different ratios of mobile phase and 4.8 mM stock solution
irectly into the detector, where the detector response was found
o be linear.

.2. Binary low efficiency separation

A small racemic drug intermediate molecule from AstraZeneca
as used as a model substance. No details of the molecular proper-

ies can be presented since this information is classified. It will be
eferred to as the “AstraZeneca substance”.

A 25 × 0.46 cm ChiralCel-OD column (Daicel Chemical Industries
td., Tokyo, Japan), consisting of 20 �m silica beads with modified
ellulose as chiral selector was installed in a Waters 2695 Sepa-
ation system. Eluent was prepared by mixing heptane (Fischer
cientific, Loughborough, Leicestershire, UK) and EtOH (Kemetyl

B, Haninge, Sweden) to a 7:3 (v/v) proportion.

The column was equilibrated with eluent at flow at 1.0 mL/min.
nd kept at a controlled temperature of 25.0 ◦C in column oven. UV-
etection was made by a DAD detector and a wavelength of 270 nm
here the detector response was found to be non-linear.
. A 1218 (2011) 662–672 665

A 47 g/L racemate (AZ substance) stock solution was prepared
by dissolving substance directly in the eluent. The injection pro-
file of the system was measured by connecting the capillaries from
the injector directly into the detector. Also, using this setup, 20 of
1 mL pulses ranging from concentrations of 47 g/L to 0.3 g/L were
injected to calibrate the detector response. The non-linear calibra-
tion curve was then interpolated by a cubic spline.

Initial analytical injections to determine the column porosity
and efficiency (half height method) of the two enantiomers were
made by injecting 10 �L stock solution with additional 0.25 mM
of 1,3,5-tri-tert-butylbenzene (TTBB) as unretained void-volume
marker. Void times of 3.05, 2.0 and 1.55 were recorded at 1, 1.5 and
2 mL/min, respectively. The column efficiency, for the first and sec-
ond eluting component of the AstraZeneca substance, respectively,
was found to be 410 and 380 theoretical plates at 2 mL/min, 550 and
570 theoretical plates at 1.5 mL/min and 820 and 760 theoretical
plates at 1 mL/min.

Overloaded injections were made using 100, 300, 450 and
600 �L injections of 47 g/L stock solution at the flow 2 mL/min.
Injections were duplicated to ensure experimental stability. The
maximum eluted concentration was 19.9 and 15.3 g/L for the
first and second eluting component of the AstraZeneca substance,
respectively.

3.3. Determination of adsorption isotherm parameters

For the quaternary case, all overloaded elution profiles recorded
in Section 3.1 were simultaneously used to estimate the adsorp-
tion isotherm parameters with the inverse method. This particular
system has previously been studied using the perturbation peak
method and the bi-Langmuir model was found to describe the
raw adsorption data excellently [17] and was therefore used here.
This estimation was repeated using the RFD, CDM and OCFE
algorithm to solve the ED equations in the inverse method, see
results in Table 1. For RFD the average column efficiency 2515
theoretical plates were used. The rounded parameters estimated
using the RFD algorithm was then used in the synthetic study in
Sections 4.1–4.4.

In the low efficiency, binary separation, all overloaded elu-
tion profiles recorded in Section 3.2 were simultaneously used to
estimate bi-Langmuir adsorption isotherm parameters with the
inverse method in the same manner as above, see results in Table 1.
For RFD the average column efficiency 395 theoretical plates were
used.

3.4. Simulations

All simulations use an measured injection profile ϕi(t), which
was determined from quaternary or binary experiment in Sections
3.1 and 3.2. The measured experimental injection profile was inter-
polated using a piecewise cubic Hermite interpolating polynomial.
The interpolated profile ϕi(t) could then be used for all injection
concentrations when keeping the injection volume and flow rate
fixed. For OCFE and CDM, ϕi(t) is identical for all values of N but
due to the coarser space-time discretization of RFD, ϕi(t) cannot be
identical to that of OCFE/CDM at low column efficiencies.

All simulated injection volumes in Sections 4.1–4.4 was fixed
at 60 �L and the flow rate fixed at 0.7 mL/min. Basic model data
in these sections, such as column length, phase ratio and void
time were all taken from Section 3.1. The RFD bi-Langmuir adsorp-

tion isotherm parameters for S(+)/R(−) methyl/ethyl mandelate
obtained in Section 3.3 were used and the components are referred
to as “Components 1–4”. Whenever CDM or OCFE is used, each com-
ponent has its unique defined apparent dispersion coefficient Da,i
but for RFD the average value, Da is used.
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Table 1
The estimated bi-Langmuir adsorption isotherm parameters using the IM with three different algorithms. The top set of parameters describes the adsorption of methyl
mandelate (MM) and ethyl mandelate (EM) isomers S(+) and R(−), they are used for numerical simulation studies in chapter 4, and are there referred to as components 1–4.
The bottom set of parameters describes the adsorption of the “AstraZeneca substance”.

Component a1 b1 [m−1] a2 b2 [m−1]

RFD CDM OCFE RFD CDM OCFE RFD CDM OCFE RFD CDM OCFE

N > 2000
MM S(+), (1) 1.37 1.25 1.25 1340 1350 1790 2.35 2.55 2.59 2260 2258 1980
MM R(−), (2) 1.33 1.26 1.28 483 487 456 3.47 3.56 3.55 3640 3636 3480
EM S(+), (3) 2.14 2.00 1.97 492 493 486 6.19 6.39 6.45 5720 5765 5720
EM R(−), (4) 2.17 2.43 2.32 0.52 0.610 0.24 11.3 10.82 11.0 8830 8467 8410
N < 500
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AZ subst. comp. 1 0.30 0.40 0.40 14.1 11.5
AZ subst. comp 2 1.20 1.25 1.22 0.01 0.00

To quantify the overlap of experimental and simulated elution
rofiles for each algorithm, the total area overlap formula was used,

verlap = 100 ·
∫ ∞

0
min(Csim(t), Cexp(t))dt∫ ∞

0
Csim(t)dt

. (7)

his formula can be considered to measure how much two 2D-
bjects with equal area intersects, i.e., how large portion of each
bject is in the intersection of them. An overlap approaching 100%
ndicates complete overlap, while 0% indicates that they are com-
letely separated.

Because the time discretization of the RFD algorithm is much
oarser than that used in CDM, the computation of overlap will
ntroduce a small error because min(CCDM(t),CRFD(t)) cannot be
valuated at the exact same point in time. It would be possible to
nterpolate the RFD profile to avoid this but this would also add a
mall error.

The binary model system described in Section 3.2, with adsorp-
ion isotherm parameters listed in Table 1, was used to maximize
roduction rate in Section 4.6. Parameters t0 and N were inter-
olated for flow rates of 1–2 mL/min. The injection profile was

nterpolated for flow rates of 1–2 mL/min and injection volumes
f 100–600 �l. Besides measured N values, we made investigations
n a quarter and double that value. The constraints on maximum
roduction rate were an excess of 95% purity and 75% yield of the
rst eluting component.

. Results and discussion

The purpose of the study is to investigate, more carefully and
ompletely, the previous claims in the literature of the insufficiency
f the RFD algorithm. More specifically binary separations where
ne has low column efficiency and different injection concentra-
ion ratios. To do this, we have made a large number of simulations
o determine trends in the difference between the RFD solution,
he OCFE/CDM solution. Additionally, we have investigated areas
ot yet studied: the case of the different solutions obtained for a
uaternary simulation with different column loads and efficiencies
nd a binary separation where the two components have different
olumn efficiencies. To experimentally validate this, we used two
ifferent experimental systems: one quaternary and one binary
ith low column efficiency. To limit the scope of our investigation,
e focus on the most commonly encountered adsorption isotherm,
ype I, e.g. Langmuir. Because the implemented finite difference
cheme of higher order (CDM) gives identical solutions to OCFE,
hich in turn is considered as the reference solution to the ED
odel, whenever the RFD solutions deviates we will interpret this

s an error in the RFD algorithm.
6.24 0.23 0.09 0.13 9.30 0.05 8.74
0.00 0.22 0.15 0.10 139 115 47.6

4.1. Quaternary simulations: impact of column efficiency and
load

Simulations of a four component separation were performed
at equal injection concentrations ranging from 0.1 to 1.5 mM and
column efficiencies ranging from 200 to 3000 in a grid of 225
equally spaced points. The simulated elutions profiles using the
RFD and CDM algorithm, each corresponding to a point in the grid,
were then compared and the overlap was calculated component
wise. A smaller subset of 36 evenly distributed simulations across
the entire set of profiles, using CDM, were compared to solutions
acquired by OCFE. These profiles were found to be identical.

The column load and efficiency correlation to degree of overlap
between the RFD and CDM algorithm are different when consider-
ing co-eluting and base-line separated species as they are different
when one considers the least and most retained components. For
co-eluting species, corresponding to components 1 and 2, we have
found that a higher column load is necessary to reach a stable and
high overlap of the different solutions even for higher column effi-
ciencies, see Fig. 1a and b. However, when considering base-line
separated species, components 3 and 4, the degree of overlap is less
sensitive to changes in column load and or efficiency, see Fig. 1c and
d. Also, there seems to be a correlation between the overlap calcu-
lated for the earliest and latest eluting component, components 1
and 4, in Fig. 1a and d, respectively, which in these quaternary simu-
lations might be a manifestation of the simulated average effective
component traveling velocity using the RFD algorithm, see details
in Section 2.2. It can clearly be seen that for low column load, an effi-
ciency exceeding 2500 is not sufficient to guarantee the accuracy
of the RFD solution.

4.2. Binary simulations: impact of column efficiency

Because the RFD algorithm uses the average column efficiency
when simulating an experiment, we investigated, if and where, a
correlation of algorithm overlap and component efficiency ratio
becomes noticeable for a binary simulation. Simulations were per-
formed at injection concentrations of 1 mM per component. This
value was chosen from the results shown in Fig. 1, where 1 mM
gives good overlap for most efficiencies. Components 1 + 2 and
1 + 3 in the quaternary example, were simulated separately, using
combinations of efficiencies ranging from 200 to 3000 theoretical
plates in a grid of 225 equally spaced points. The simulated profiles
obtained by RFD and CDM for each set of binary simulations were

compared to each other and the overlap calculated.

Again, different results were obtained depending on if the
considered simulation has co-eluting or base-line separated com-
ponents. For co-eluting components, simulations describing the
individual components differ if one leaves a 1:1 ratio of column
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lgorithm and 60 �L of the sample is injected. The overlap contour surface consists
er component and column efficiency is between 200 and 3000 theoretical plates.

fficiency. The worst case scenario is when the first component
as over 1000–3000 theoretical plates and the second is below
000. For the cases of 1000 to 3000 theoretical plates, the solutions
or both components are very similar. Base line separated species
how very little sensitivity to either combination, but shows similar
rends as co-eluting species.

.3. Binary simulations: impact of injection concentrations

We have made some more detailed observations regarding
eeded precaution when simulating different injection concen-
ration ratios for a binary separation, i.e., effectively simulating
otentially steep concentration gradients between components.
e have investigated combinations of injection concentrations

anging from 0.5 to 1.5 mM in an equally spaced grid of 121 points,
t fixed column efficiencies of 400 and 2000 theoretical plates. Each
air of simulated elution profiles obtained by the RFD and CDM
lgorithm were then compared.

Yet again, we observe different behavior of the earliest eluting
omponent versus the later eluting component, as well as minor
ifferences between co-eluting and base-line separated compo-
ents. When the efficiency is set to 2000, the solutions obtained

or two co-eluting components using either the RFD or CDM algo-
ithm are practically identical for even the extremes of ratios, see
ig. 2a and b. For an efficiency of 400, the overlap is poor for the
astest eluting component, see Fig. 2c. However the overlap is rather
niformly dependent on concentration ratios, indicating that low

fficiency is the main cause for poor overlap. Interestingly, the dif-
erence in solutions for the second component are practically the
ame as for 2000 theoretical plates, compare Fig. 2b and d.

For base-line separated components, the average of the over-
ap of the second eluting component is higher than for the first
rid of 225 points where the injection concentration is between 0.1 mM and 1.5 mM

eluting component and almost independent of injection ratio at
either low or high efficiency, see Fig. 4 At high efficiency, the first
eluting component is clearly dependent on the injection concen-
tration ratio, see Fig. 3a, but still relatively insensitive. For low
efficiencies, we find similarities with the simulations performed
with components 1 and 2 Fig. 2c and d, but overall the overlap is
lower.

4.4. Binary simulations: impact of the number of components and
combination of retention factors

Different combinations of simulated unary, binary, ternary and
quaternary separations were performed to investigate how the
combination of relative retention between the simulated compo-
nents effects the difference in obtained solutions by the RFD and
CDM algorithm.

To do this, we calculated the overlap of the first eluting compo-
nent when simulated alone and then in the presence of additional
components. The best overlap given a certain column efficiency
and at a fixed column load is obtained, as expected, for single
component simulation. Adding additional components with con-
tinuously increasing retention factors continuously decreases the
overlap. This confirms the correlation of decreasing accuracy of
solutions to increasing numbers of simulated components. How-
ever, adding additional components with mixed retention factors
to the simulation do not lead to a continuous decrease in overlap,
see Fig. 4. This is not surprising, considering that the RFD algo-

rithm discretization is based on average effective traveling velocity
of the simulated components, the larger the relative difference in
retention factors, the greater the error. The point to be made is
that it is the relative difference of retention factors of the sim-
ulated components that is important, beside that of the actual
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umber of simulated components as well as column efficiency
nd load. We have also showed that considerably higher effi-
iency than 1000 is required when simulating two components
ith markedly different retention.

.5. Experimental validation of findings

Experimental comparison of the simulated and experimental
rofiles for the quaternary, high efficiency in Section 3.1 show

lmost identical results when uses either the RFD, CDM or OCFE
lgorithm, see Fig. 5. Parameters found describing the bi-Langmuir
dsorption isotherm are, within error margins, almost similar for
he three algorithms, see Table 1. Correlating this finding to the sim-
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ig. 6. The chromatogram shows overlay of experimental and simulated chromatogram
sed with RFD, OCFE and CDM. The experimental chromatogram shows 100–600 �L of
CFE (dotted), CDM (dash-dotted). Binary isotherm parameters are listed in Table 1.
shows a quaternary injection of 60 �l 0.6 mM S(+)/R(−)-methyl-mandelate and
S(+)/R(−)-ethyl mandelate. Experimental data is solid line, RFD simulated (dashed),
OCFE (dotted), CDM (dash-dotted). Notice, that these components are referred to as
components 1–4 in the synthetic study.

ulations at high efficiency, we expect the RFD and CDM algorithm
to produce accurate, but not necessarily identical, solutions of Eq.
(1), provided sufficient column load and efficiency, and this is what
we observe, see Fig. 5. This experimental validation can be com-
pared to the overlap contour surface in numeric study in Fig. 1 at
N = 2500 and C = 0.6 mM. Here the degree of overlap of RFD to CDM
is around 95–97%, which is also what we find comparing the three
simulated chromatograms to the experimental elution profiles.

For the binary, low efficiency, enantiomeric separation, defined
in Section 3.2, the results are different. If we use the inverse method
with the RFD, CDM or OCFE algorithms, they will have almost the
same degree of overlap with the experimental profiles at higher

column load, see Fig. 6c and d, but not at lower load, see Fig. 6a
and b. This is what could be expected from the synthetic studies.
Despite the low efficiency at a certain high enough column load, the
overlap will be almost identical, but if we decrease the column load
we will encounter conditions where the simulations differ. To our
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s of the “AstraZeneca” binary racemic drug intermediate. The inverse method was
47 g/L racemic injections. Experimental data is solid line, RFD simulated (dashed),
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ig. 7. Contour surfaces for maximum production rate of the earliest eluting comp
alculated for injections between 100 and 600 �L at flows between 1 and 2 mL/min
n area where either purity or yield requirements could not be met for any cut-poin
or 100 < N < 200, in (II) for 400 < N < 800 and in (III) for 800 < N < 1600.

nowledge, for the first time, these have been shown with actual
xperimental data.

Differences between the three algorithms are also shown by the
btained adsorption isotherm parameters. It seems as the error in
FD algorithm to degree of overlap, as we have observed in the
ynthetic study, is compensated by error in adsorption isotherm
arameters. Using the acquired parameters for RFD or CDM/OCFE
nd simulating using the other algorithm, gives lower degree of
verlap, confirming this suspicion.
.6. Calculation of optimal production rate for a binary
eparation

Here we optimize the flow rate and injection volume to max-
mize the production rate for a binary separation based on the
in the binary experiment described in Section 3.2. Production rates [mg/min] are
11 × 11 grid. Constraints of >95% purity and >75% were used. Black color indicates
Production rate calculated by RFD and (b) production rate calculated by CDM. In (I)

experimental parameters in Section 3.2. The common objectives are
that the first eluted component should be collected in excess of 95%
purity and the yield should be at least 75%. Using the measured effi-
ciency we found negligible differences between the predictions of
maximum productivity of RFD and CDM, see Fig. 7a and b. At half the
efficiency, the predictions are also quite similar. At a quarter of the
measured efficiency, RFD and CDM both predict markedly differ-
ent maximum production rate and also different regions where the
constraints are fulfilled. These findings are in line with our earlier
results.
5. Conclusions

In this study, over 1000 simulated synthetic experiments have
been performed and presented to compare the solutions of the
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ouchon finite difference method (RFD) to those of the easily imple-
ented and more accurate algorithm, the central finite difference
ethod (CDM), and the more complicated Orthogonal Collocation

n Finite Element (OCFE) method. Overlap contour surfaces have
een presented to show where precaution might be needed when
hoosing between algorithms, but caution must be taken not to
raw to general conclusions. OCFE is considered the most accurate
lgorithm available and was used as a reference solution.

All our studies have shown that the single most important
arameter, always leading to different solutions to Eq. (1), when
sing the RFD or CDM algorithm, is the apparent column efficiency
. Considering that we in most cases find that the CDM and RFD
olutions differs when N < 1000 theoretical plates, we can also con-
rm the rule of thumb that not to use RFD in these cases. However,
s we also have demonstrated, this should in no way be consid-
red a stringent requirement for accuracy, as we have presented
any cases where twice that value is required. Together with the

ndings in Ref. [5], this concludes us to state that RFD should be
voided and no real certainty of its correctness can be guaranteed
nless one compares the solutions with more accurate algorithms.

In more detail, we have found the correlation of column load
ith efficiency to have a great impact on the obtained solutions

f Eq. (1). For certain combinations of column efficiency and load,
ffectively the degree of column overload, the solutions markedly
iffer. For a fixed column load, increasing the efficiency generally

eads to higher degree of overlap. For a fixed efficiency, increas-
ng the column load generally leads to higher degree of overlap.
onsidering the simulation of a single component, this behavior is

ndicated by the Shirazi number [1]. As the number indicates that
hen either the load or efficiency is increased, the solution of the

D-model approaches that of the ideal model, the RFD algorithm is
xpected to give good results. However, for multiple components,
he Shirazi number is not defined. Our simulations of four com-
onents shows that if the column load is small enough but still in
he nonlinear region of the adsorption isotherm it is possible to
ncrease the efficiency without noticeably improving overlap at all,
ee Fig. 1. This is an important new finding.

Our main observations are the following: difference between
he RFD and CDM solution was found to increase,

(i) With decreasing column efficiency and load.
(ii) When the efficiency difference between the two components

increases, as long as one of the components has less than at
least 1000 theoretical plates. In particular in the case when one
has partially co-eluting components, whereas the solutions for
baseline resolved components are less sensitive.

iii) As the sample composition deviates from 1:1 ratio, the solution
for the first eluting component is more sensitive than for the
second eluting component in the case of a binary separation.

iv) When the number of components is increased, each with an
increased retention factor. The divergence does not seem to
increase noticeably if further components with intermediate
retention factors are included.

CDM solutions were found to be identical to those obtained by
CFE, however more calculation time was required. Our results

how that RFD yields inaccurate solutions under a number of
ircumstances when compared to CDM/OCFE. We therefore recom-
end implementation of OCFE for any practical purposes where

ccurate predictions are needed. Although it is much easier to
mplement compared to OCFE, CDM is not recommended solely

ased on its slowness. Our results indicate that RFD cannot be
sed with confidence for as low as 1000 or even 3000 theoretical
lates or not at all regardless of plate number, when considering
angmuir-like adsorption isotherms for a quaternary simulation.
his is in line with but does not validate the previous conclu-
. A 1218 (2011) 662–672 671

sion that N ∼ 10,000 is required for RFD ternary calculations. The
results presented by Kaczmarski [5], regarding simulations where
two components are injected and the third is a modifier in the
mobile phase is a special, but none the less important case, of
the ternary problem. This effect was probably due to the fact that
the third component was in the eluent causing so called additive
deformations of the binary elution profiles; it has recently been
demonstrated how sensitive these effects are to the number of
plates [18]. A more thorough study would clarify the problems
with additative deformations. Nevertheless, the results in [5] is
yet another indication of that the rule of thumb of employing
at least 1000 theoretical plates for the RFD algorithm is largely
underestimated.

When it comes to using the IM for process optimization, the RFD
inaccuracy may not always be an issue. Sufficiently good predic-
tions may be obtained although that the solution is inaccurate, since
the IM will converge to the best possible overlap with experimental
chromatograms (given the choice of column model, PDE algorithm
and data quality) which is not necessarily equivalent with the
true adsorption isotherm parameters. In this study the three algo-
rithms resulted in similar but not identical adsorption isotherm
parameters when using the IM on a high-efficiency experimen-
tal system, Navg = 2500, whereas quite different sets of parameters
were obtained for a low-efficiency experimental system Navg = 395,
where even the number of Langmuir sites are estimated differ-
ently. The IM solutions corresponding to the three algorithms all
gave similar solutions at high column load but clearly distinguish-
able different simulations at low column load. At low column load,
solution of the OCFE and CDM algorithm clearly has a higher over-
lap with experimental data, than then one that is obtained by the
RFD algorithm. It is of particular importance that the overlap is
satisfactory in the co-elution zone(s), so that the process chro-
matographer can determine when to collect the pure fraction(s)
based on simulations. Provided the experimental data has suffi-
cient quality, the column model and adsorption isotherm model
have been correctly chosen, our data indicate that it is reasonable
to assume that in general, OCFE and CDM should provide better
overlap and thus better process predictions than RFD. We have
demonstrated that the prediction of optimal production rate for
a binary simulation is clearly dependent on the choice of algorithm
at low column efficiency, as predictions are clearly different, but it
remains to be explicitly demonstrated by performing experiments.
Because of the earlier studies on other type of adsorption isotherms,
for example the complete failure of RFD to simulate a BET type
adsorption isotherm [5], it also remains to in detail study the type
II–IV isotherms. However, in these cases, the particular plate num-
ber and column load may be irrelevant to explain the major cause of
error.
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